skip to main content


Search for: All records

Creators/Authors contains: "Larocque, Hugo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Advances in laser technology have driven discoveries in atomic, molecular, and optical (AMO) physics and emerging applications, from quantum computers with cold atoms or ions, to quantum networks with solid-state color centers. This progress is motivating the development of a new generation of optical control systems that can manipulate the light field with high fidelity at wavelengths relevant for AMO applications. These systems are characterized by criteria: (C1) operation at a design wavelength of choice in the visible (VIS) or near-infrared (IR) spectrum, (C2) a scalable platform that can support large channel counts, (C3) high-intensity modulation extinction and (C4) repeatability compatible with low gate errors, and (C5) fast switching times. Here, we provide a pathway to address these challenges by introducing an atom control architecture based on VIS-IR photonic integrated circuit (PIC) technology. Based on a complementary metal–oxide–semiconductor fabrication process, this atom-control PIC (APIC) technology can meet system requirements (C1)–(C5). As a proof of concept, we demonstrate a 16-channel silicon-nitride-based APIC with (5.8±0.4)ns response times and >30dB extinction ratio at a wavelength of 780 nm.

     
    more » « less
  2. Waveguide-based optical mode conversion requires wavelength-scale patterning of the waveguide's optical properties. We implement a programmable version of this patterning with piezoelectrically actuated photonics.

     
    more » « less
  3. We demonstrate a photonic crystal cavity interferometric modulator in thin-film lithium niobate on insulator with 6 GHz bandwidth, 35 dB extinction, 2π ×1.27 GHz/V DC-tuning, and a 40-by-200 micron square footprint.

     
    more » « less
  4. We introduce hybrid integrated telecom single-photon sources on a commercial foundry multilayer silicon photonic chip. We show above-band and resonant waveguide-coupled single-photon emission tunable via the DC Stark shift.

     
    more » « less
  5. We demonstrate the integration of superconducting single-photon detectors onto arbitrary photonic substrates via transfer printing. Using this method, we show single-photon detection in a lithium niobate on insulator photonic circuit.

     
    more » « less
  6. Abstract

    The scaling of many photonic quantum information processing systems is ultimately limited by the flux of quantum light throughout an integrated photonic circuit. Source brightness and waveguide loss set basic limits on the on-chip photon flux. While substantial progress has been made, separately, towards ultra-low loss chip-scale photonic circuits and high brightness single-photon sources, integration of these technologies has remained elusive. Here, we report the integration of a quantum emitter single-photon source with a wafer-scale, ultra-low loss silicon nitride photonic circuit. We demonstrate triggered and pure single-photon emission into a Si3N4photonic circuit with ≈ 1 dB/m propagation loss at a wavelength of ≈ 930 nm. We also observe resonance fluorescence in the strong drive regime, showing promise towards coherent control of quantum emitters. These results are a step forward towards scaled chip-integrated photonic quantum information systems in which storing, time-demultiplexing or buffering of deterministically generated single-photons is critical.

     
    more » « less